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Régime forcé périodique de 1'oscillateur
élémentaire

mx+cx+kx=f(t)=ft+T)

A1)




=P~L Décomposition en séerie de Fourierde 1 (t)

A1) Force externe décomposée en série de Fourier
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= +Y (A, cosnwrt + B, sinnwt) (5.1)

; ! n

(uz Oi ' —— -

ko Coefficients de la série de Fourier
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c Période de la force d’excitation ' § 4
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=P~L Décomposition en série de Fourier de 1 (t)

Coefficients de la série de Fourier

! P
_ 2
Fy = 7£f(t>dt
5 T
A, = —T—_([f(t)cosna)tdt (3.2)
5 T
0, = —T-—‘([f(t)sinna)tdt

Fonctions f(7) paires et impaires
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st f(=t)=f() B, =0
st f(—t)=-f() A,=0



=P~L Décomposition en série de Fourier de 1 (t)

Force externe décomposée en série de Fourier
Forme compacte de I’ excitation

1
f(t) = EFO
. J(t) = —Z-FO+ZF,,COS not —y,) (53)
+2(An cosnwt + B, sinna)t) (5.1) .
” avec
\/A2 + B2

(5.4)
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=P~L Décomposition en série de Fourier de 1 (t)

Forme compacte de I’ excitation

f(0) = 2K+ Y Fcos(nor - y,) (53
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=PFL Régime permanent periodique
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mx+cx+kx = f(r)

f(6) = 2B+ Y Fcos(nor - y,) (53|
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F; cos(wt — Y1)

F, cos(2Qwt — ,)

F; cos(3wt — 3)



=PFL Régime permanent periodique

()= 2B+ Y Fcos(nor - w,) (53)

F; cos(wt — Y1)

ab - G. Villanueva
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F, cosQwt — )

F; cos(Bwt — Y3)
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=PFL Permanent periodique - Notations complexes

f(t) = —FU+ZF; cos(nwt — y,) (5.3) £(t) = fn——0+ F,e~J¥nginwt
0-5a-503

avec f, = F e 7¥n = Tf f()e Inot q¢
0

0

S — Fo O Fy . Fo O F, .
x(t) = ) x, =ﬁ+zl(nw)Fn pJ(Mwt=n) — ﬁ_pzl:ﬂ(nw)f o) (wt—1p) =ﬁ+2ﬂ(w)f o) (nwt—1m)

Réponse complexe en fréquence pour
I’harmonique de rang n

|

H. = 2 : _ : b —

=2 n (1 B I’l2 ﬁz) + 2] n nﬁ (5 3) X, = Hn(a))f e](nwt Yn) — Xne](nwt Yn—Pn)
e"j(pn
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Permanent periodique - Notations complexes

H,(B)

Fn
Xn = ﬂ(w) F

Déphasage de I’harmonique de rang n

naowec

(1 —n?B?%) + j2nnp

eI (NOt=Y) — X pi(nt=Pn—pn)

Amplitude de I’harmonique de rang n
Fy
Xn = ‘ﬂ‘ T UnXsn (5.6)
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Permanent periodique - Notations complexes

Deéplacement en notations complexes Deéplacement réel
2R & x(1) = Re x(1)
1/2 E = h

Zx einwr-vu=0,) (524)

-|-i Xn. COS(n )] l//n — g0”1)



=P~L Notationdu livre - u,,

M

\/(1 . ﬁz)z + 402 n? B2
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=PFL Point de vue de la decomposition de f (t)
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=PFL Exemples de solutions - w¢,,.. > wy
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=PFL Exemples de solutions - w¢,,c. ~ wy/3
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=P-L Résumé

= Decomposition de la force
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